Section 3.4 Review Problems

Formulas

Displacement =

Average Velocity =

Velocity =

Speed =

Moving right / forward:

Moving left / down:

Complete this worksheet on a separate sheet of paper.

Acceleration =

Speeding up:

Slowing down:

- 1. The *position* of a particle that moves along a line is given by $s(t) = t^2 4t + 3$ for any time $t \ge 0$.
 - a. Find the displacement of the particle for the first 5 seconds.
 - b. Find the average velocity of the particle for the first 5 seconds.
 - c. Find the velocity of the particle at 5 seconds.
 - d. Is the particle moving forward or backwards at 5 seconds? Explain.
 - e. Is the particle speeding up or slowing down at 5 seconds? Explain.
 - f. Find the acceleration of the particle at any time t.
 - g. When does the object change directions?
- 2. The *position* of a particle that moves along a line is given by $s(t) = t^2 11t 12$ for any time $t \ge 0$.
 - a. Find the displacement of the particle for the first 2 seconds.
 - b. Find the average velocity of the particle for the first 2 seconds.
 - c. Find the velocity of the particle at 2 seconds.
 - d. Is the particle moving forward or backwards at 2 seconds? Explain.
 - e. Is the particle speeding up or slowing down at 2 seconds? Explain.
 - f. Find the acceleration of the particle at any time t.
 - g. When does the object change directions?
- 3. An object is propelled upward with an initial velocity of 32 feet per second so that its *height* is given by $h(t) = -.8t^2 + 32t$. (calculator allowed)
 - a. Find the objects velocity and acceleration at any time t.
 - b. When did the object reach its maximum height?
 - c. What was the maximum height of the object?
 - d. When did the object reach half its maximum height?
 - e. When did the object hit the ground?

- 4. An object is propelled upward with an initial velocity of 16 feet per second so that its *height* is given by $h(t) = -.8t^2 + 16t$.
 - a. Find the objects velocity and acceleration at any time t.
 - b. When did the object reach its maximum height?
 - c. What was the maximum height of the object?
 - d. When did the object reach half its maximum height?
 - e. When did the object hit the ground?
- 5. The number of *gallons* in a water tank in t minutes is given by $V(t) = 300(25 t)^2$. The tank is being drained. How fast is the tank draining in 3 minutes? 7 minutes? When will the tank be empty?
- 6. The graph below shows the *velocity* of an object in ft/sec. Use the graph to answer the following?
 - a. When does the object change directions?
 - b. Graph the acceleration of the object.
 - c. When does the object speed up/slow down?
 - d. When is the object moving at a constant speed?
 - e. When is the object moving forward/backward?
 - f. What is the velocity at t = 6?
 - g. What is the acceleration at t = 6?

- 7. The graph below shows the *velocity* of an object in ft/sec. Use the graph to answer the following?
 - a. When does the object change directions?
 - b. Graph the acceleration of the object.
 - c. When does the object speed up/slow down?
 - d. When is the object moving at a constant speed?
 - e. When is the object moving forward/backward?
 - f. What is the velocity at t = 8?
 - g. What is the acceleration at t = 8?

- 8. The graph below shows the *velocity* of an object in ft/sec. Use the graph to answer the following?
 - a. When does the object change directions?

