\qquad

Homework for Section 5.1

P. 198: 1-9 odd Identify each x-value at which any extreme value occurs.

Label each as absolute maximum, relative maximum, absolute minimum, or relative minimum. (Note: Answers in the back of the book are only for ABSOLUTE extrema)
1.
7.
3.
9.
5.
P. 197: 5-8 all Match each table with the graphs.
5.
6.
7.
8.

State the $\mathbf{5}$ steps we used in each problem of the class notes to determine the extrema for each function: 1.
2.
3.
4.
5.

Write down the Extreme Value Theorem (p. 192), then draw two graphs that demonstrate the EVT.

- Find the extreme values of each function and where they occur.
- Also, indicate if there is not a maximum or minimum for the function.
(You must use the five step method demonstrated in the class lecture.)

1. $f(x)=2 x^{2}-8 x+9$
a) Domain:
b) $f^{\prime}(x)=$
c) Critical Points
$f^{\prime}(x)=0$
$f^{\prime}(x)=$ undef.
d) Number Line
e) Answer
f) Draw a graph of the function with a graphing calculator to confirm your findings.
2. $g(x)=x^{3}-27 x+4$
a) Domain:
b) $g^{\prime}(x)=$
c) Critical Points
$g^{\prime}(x)=0$

$$
g^{\prime}(x)=\text { undef }
$$

d) Number Line
e) Answer
f) Draw a graph of the function with a graphing calculator to confirm your findings.
3. $q(x)=\cos x \quad$ on $\left[\frac{\pi}{2}, 2 \pi\right]$
a) Domain:
b)
)
4. $y=e^{-x} \quad$ on $-1,1$
a)
b)
c) Critical Points
c) Critical Points
\qquad
d) Number Line
d) Number Line
e) Answer
e) Answer
f) Draw a graph of the function with a graphing calculator to confirm your findings.
f) Draw a graph of the function with a graphing calculator to confirm your findings.
5. $y=\left\{\begin{array}{cc}4-2 x & -3<x \leq 1 \\ x+1 & x>1\end{array}\right.$
a)
b) $\frac{d y}{d x}=\{$
$-3<x \leq 1$
$x>1$
c) Critical Points
\qquad
\qquad
c) Critical Points
d) Number Line
e) Answer
d) Number Line
e) Answer
f) Draw a graph of the function with a graphing calculator to confirm your findings.
b) Simplify your derivative
6. $h(x)=\sqrt{9-x^{2}}$
a) Domain:

