Notes: Linear Growth using Stacking Towers

slope – intercept form of a line : y = mx + b

in other words ... y = (change)x + beginning

Example 1:

How many piece(s) were there in the beginning - step 0 (b)?

Write an equation $y = \mathbf{m}x + \mathbf{b}$ to represent the pattern $y = \frac{3}{1} \times \frac{1}{1} \times \frac{3}{1} \times \frac{1}{1} \times \frac{3}{1} \times \frac{3}{1}$

n=3x+2

Example 2:

How is the pattern changing (m)?

vertical change horizontal change

How many piece(s) were there in the beginning - step 0 (b)?

Write an equation $y = \mathbf{m}x + \mathbf{b}$ to represent the pattern $y = \mathbf{k} + \mathbf{k}$

Example 3:

How is the pattern changing (m)?

How many piece(s) were there in the beginning - step 0 (b)?

Write an equation $y = \mathbf{m}x + \mathbf{b}$ to represent the pattern $\sqrt{2^{-\frac{1}{2}}} \times + 10$

Example 4:

How is the pattern changing (m)?

How many piece(s) were there in the beginning - step 0 (b)?

Write an equation $y = \mathbf{m}x + \mathbf{b}$ to represent the pattern $\sqrt{\frac{5}{3}} \times 10^{-5}$

summary:

Inear equation's equation of aline

constant rate of change

slope: rise or vertical change = 5+ ceptiess

norizohtal change = 5+ ceptiess

y-Intorcept: line crosses the y- axis.

Name:		
Period:	Date:	

Assignment: Linear Growth using Stacking Tower

Problem 1:

How is the pattern changing (m)?

vertical change horizontal change

How many piece(s) were there in the beginning - step 0 (b)?

Write an equation $y = \mathbf{m}x + \mathbf{b}$ to represent the pattern _____

Write Equations for each linear growth pattern.

Problem 2:

Problem 3:

Problem 4:

Equation: _____

Equation:

Equation:

