Section 3.2 **Differentiability**

To determine if you can find the derivative at a point, ask these questions:

- 1) Is the point in the domain?
- 2) Is the function continuous at that point?

 - 1. f(c) exists | lim f(x) = lim f(x) | (closed interval)
 2. lim f(x) exists | x > c | x > c |
 - 3. $f(c) = \lim_{x \to c} f(x)$
- 3) Is the function differentiable at that point?
 - 1. no corners

State the domain of the function. Identify where the function is continuous and differentiable.

D:
$$\left(-\infty,\infty\right)$$

D: $(-\infty, \infty)$ Cont: $(-\infty, 2)(2, \infty)$

Diff: $(-\infty, 2)(2,4)(4,\infty)$

D: $(-\infty, 0)(0,5)(5,7]$ Cont: $(-\infty, 0)(0,5)(5,7]$ Diff: $(-\infty, 0)(0,4)(4,5)(5,7]$

Sec 3.2

1

P(0,0)

y'left 2x y'right 1 $\lim_{x\to 0} y' = 0$ $\lim_{x\to 0^+} y' = 1$ f is not diff. at X=0

P. 106 23