3. A ball is rolling along the x-axis according to the function

a) When does the ball change direction?

$$V(t)=0 \qquad V(t)=t^2-6t+8$$

$$t^2-6t+8=0$$

$$(t-2)(t-4)=0$$

$$t=2,4 \text{ seconds}$$
 The ball changes direction at $t=2$ and 4 seconds b/c $v(t)$ changes signs there.

b) When is the ball moving right? The ball is moving right forward on
$$[0,2)(4,\infty)$$
 b/c $v(t)>0$

When is the ball moving left?

The ball is moving left/backward on
$$(2,4)$$
 b/c $v(4) < 0$

d) Find the ball's displacement for the <u>first 3 seconds</u>.

displacement
for the first =
$$S(3) - S(0)$$

3 seconds
= $\left[\frac{1}{3}(3)^{3} - 3(3)^{2} + 8(3) - 10\right] - \left[\frac{1}{3}(0)^{3} - 3(0)^{2} + 8(0) - 10\right]$
= $[-4] - [-10]$
= $6f+$.

e) Average velocity of the ball for the first 3 seconds Ave. Velocity =
$$\frac{S(3) - S(0)}{3 - 0}$$
 ft.
= $\frac{6 + 1}{3 \cdot 800}$ = $\frac{6 +$

f) Find the instantaneous velocity of the ball at t = 5 second

$$S'(t) = V(t) = t^{2} - 6t + 8$$

 $V(5) = (5)^{3} - 6(5) + 8$
 $V(5) = 3^{5} / 5 = 6$

 $V(5) = (5)^{2} - 6(5) + 8$ V(5) = 3 f/sec Note: We can determine this is a reasonable answer b/c we know V(5) should be a positive value

g) Find the acceleration of the ball at t = 1 second

$$S''(t) = V'(t) = a(t) = 2t - 6$$

 $a(1) = 2(1) - 6$
 $a(1) = -4 \frac{f+}{8c^2}$

4) A particle is moving along the (y-axis according to the function by $(t) = t^3 - 6t^2 + 7t - 3$ (ft.)

a) Find the particle's displacement after 1 second?

Find the particle's displacement after 2 seconds?
$$y(2) - y(0) = (-5) - (-3)$$

Find the particle's displacement after 3 seconds? $y(3) - y(0) = (-9) - (-3)$
 $y(3) - y(0) = (-9) - (-3)$

b) Average velocity of the particle for the first 3 seconds

$$\frac{y(3) - y(0)}{3 - 0}$$
= $\frac{(-4) - (-3)}{3}$
= $\frac{-6}{3}$ see -2 ft/sec

c) Find the <u>instantaneous velocity</u> of the particle at t = 2

$$y'(t) = v(t) = 3t^{2} - 12t + 7$$

$$v(2) = 3(2)^{2} - |2(2) + 7$$

$$v(2) = -5 \text{ fisec}$$
(Note: The speed is 5 fisec
and the particle is moving downward)

d) Find the acceleration of the particle at t = 1

$$y''(t) = v'(t) = a(t) = 6t - 12$$

$$a(1) = b(1) - 12$$

$$a(1) = -6 + \frac{1}{2} \sec^{2}$$

e) When does the particle change direction? (Note: Check places when
$$V(t) = 0$$
)
$$V'(t) = V'(t) = 3t^2 - 12t + 7$$

$$0 = 3t^2 - 12t + 7$$

$$X = -\frac{(-12) \pm \sqrt{(-12)^2 - 4(3)(1)}}{2(3)}$$

 $\chi \approx 0.709$ and 3.291 seconds

f) When does the particle move up?

The particle moves up
$$[0,0.709](3291,\infty)$$
 b/c $V(t) > 0$

When does the particle move down?

(v'(t)=a(t)=6t-12)0 = 6t-12 6t=12

g) When does the particle speed up?

The particle speeds up on (1.709, 2) (3.291,00) b/c v(t) and a(t) are the same sign

When does the particle slow down?

b)
$$\frac{d}{dc}(A)$$
 $\frac{d}{dc} = \frac{C}{2\pi}$

$$\frac{d}{dc}(\frac{C^2}{4\pi})$$

$$\frac{d}{dc}(\frac{1}{4\pi}c^2)$$

$$= \frac{1}{2\pi}c$$

$$= \frac{1}{2\pi}$$

$$\frac{d}{dc} = \frac{1}{2\pi}$$

$$\frac{d}{dc} = \frac{1}{2\pi}$$